

Continuity

Definition: A function is continuous at a number a if
 $$
\lim _{x \rightarrow a} f(x)=f(a)
$$

Note: that the definition implicitly requires three things of the function

1. $f(a)$ is defined (i.e., a is in the domain of f)
2. $\lim _{x \rightarrow a} f(x)$ exisits
3. $\lim _{x \rightarrow a}^{x \rightarrow a} f(x)=f(a)$
f has a discontinuity at a, if f is not continuous at a. Note the graphs of the examples of discontinuities below:

$f(x)=\left\{\begin{array}{r}1 / x \text { if } x \neq 0 \\ 0 \text { if } x=0\end{array}\right.$

Removable

$f(x)=\left\{\begin{array}{cc}x^{2} / x & \text { if } x \neq 0 \\ 1 & \text { if } x=0\end{array}\right.$

Jump

$f(x)=[[x]]$

Types of Discontinuities...

- Ressiovabje Djscosicisuljitjes - can be "repaired"
- Hole (factor can be "factored out" of the denominator)
\checkmark Essencijal Disconicinuities - cannot be "repaired"
- Jumps (usually found in piecewise functions)
- Asymptotes (can't remove a factor/problem in the denominator) ---

$$
\begin{aligned}
\frac{x^{3}-1}{x-1} & =\frac{(x-1)\left(x^{2}+x+1\right)}{x-1} \\
& =(x+x+1) \\
& =\left(x+\frac{1}{2}\right)^{2}+\frac{3}{4}
\end{aligned}
$$

- Continuity - no gaps in the curve (layman's definition)
- Discontinuity - a point where the function is not continuous
- Removable discontinuity - a discontinuity that can be removed by redefining the function at a point also called a point discontinuity
- Infinite discontinuity - a discontinuity because the function increases or decreases without bound at a point
- Jump discontinuity - a discontinuity because the function jumps from one value to another
- Continuous from the right at a number a - the limit of $f(x)$ as x approaches a from the right is $f(a)$
- Continuous from the left at a number a - the limit of $f(x)$ as x approaches a from the left is $f(a)$
- A function is continuous on an interval if it is continuous at every number in the interval

Limit Laws

If $\lim _{x \rightarrow a} f(x)=M$ and $\lim _{x \rightarrow a} g(x)=N$
Sum $\lim _{x \rightarrow a}[f(x)+g(x)]=M+N$
Difference $\lim _{x \rightarrow a}[f(x)-\mathrm{g}(x)]=M-N$
Constant $\lim _{x \rightarrow a}[k \cdot f(x)]=k \bullet M$
Product $\lim _{x \rightarrow a}[f(x) g(x)]=M \cdot N$
Quotient $\lim _{x \rightarrow a}\left[\frac{f(x)}{g(x)}\right]=\frac{M}{N} \quad N \neq 0$
Power $\quad \lim _{x \rightarrow a}[f(x)]^{n}=M^{n} \quad n$ is a positive integer
Root $\quad \lim _{x \rightarrow a}[\sqrt[n]{f(x)}]=\sqrt[n]{M} n$ is a positive integer

Limit Formulas:

1. $\lim _{x \rightarrow 0} \frac{\sin x}{x}=\lim _{x \rightarrow 0} \frac{\tan x}{x}=1$
2. $\lim _{x \rightarrow 0} \frac{\sin ^{-1} x}{x}=\lim _{x \rightarrow 0} \frac{\tan ^{-1} x}{x}=1$
3. $\lim _{x \rightarrow 0} \frac{\ln (1+x)}{x}=1$
4. $\lim _{x \rightarrow 0} \frac{a^{x}-1}{x}=\ln a$
5. $\lim _{x \rightarrow 0} \frac{e^{x}-1}{x}=1$
6. $\lim _{x \rightarrow a} \frac{x^{n}-a^{n}}{(x-a)}=n \cdot a^{n-1}$
7. Let $f(x)=\left\{\begin{array}{ll}\cos (x)+1 & , \text { if } x \leq 0 ; \\ 2-3 x & \text { if } x>0\end{array}\right.$ Determine if this function is continuous at $x=0$. Solution:
8. The function is defined at $x=0$ and the value is $f(0)=\cos (0)+1=2$.
9. Since $y=\cos (x)+1$ is continuous at $x=0$, we have:

$$
\lim _{x \rightarrow 0^{-}} f(x)=\lim _{x \rightarrow 0^{-}} \cos (x)+1=\cos (0)+1=2 .
$$

3. Since $y=2-3 x$ is continuous at $x=0$, we have:

$$
\lim _{x \rightarrow 0^{+}} f(x)=\lim _{x \rightarrow 0^{+}} 2-3 x=2-3(0)=2
$$

Since all three of these values are the same, the function is continuous at $x=0$.
Q 2. Let $f(x)=\left\{\begin{array}{ll}x^{2} \sin \left(\frac{1}{x}\right)+3 & , \text { if } x \neq 0 ; \\ 1 & , \text { if } x=0 .\end{array}\right.$. Is f continuous at $x=0$?

Solution:

1. The function is defined at $x=0$ and its value is $f(0)=1$.
2. Now we use the squeeze theorem to find the value of the limit.

Since $-1 \leq \sin \left(t \frac{1}{x}\right) \leq 1$ for all values of x, we can multiply by x^{2} to get $-x^{2} \leq x^{2} \sin \left(\frac{1}{x}\right) \leq x^{2}$ for all values of x. Since $\lim _{x \rightarrow 0}-x^{2}=0=\lim _{x \rightarrow 0} x^{2}$, we conclude that the function between them also approaches zero. Therefore $\lim _{x \rightarrow 0} x^{2} \sin \left(\frac{1}{x}\right)=0$, which implies $\lim _{x \rightarrow 0} f(x)=\lim _{x \rightarrow 0} x^{2} \sin \left(\frac{1}{x}\right)+3=3$.

Since the value of limit does NOT equal the value of the function, $f(x)$ is NOT continuous at $x=0$.
3. Let $f(x)=\left\{\begin{array}{ll}\frac{x^{2}-9}{x-3} & , \text { if } x<3 ; \\ c x^{2}+10 & , \text { if } x \geq 3 .\end{array}\right.$ Find the value of c so that $f(x)$ is continuous at $x=3$

Solution:

1. The function is defined at $x=3$ and its value is $f(3)=c(3)^{2}+10=9 c+10$.
2. $\lim _{x \rightarrow 3^{-}} f(x)=\lim _{x \rightarrow 3^{-}} \frac{x^{2}-9}{x-3}=\lim _{x \rightarrow 3^{-}} \frac{(x-3)(x+3)}{x-3}=6$.
3. Since $y=c x^{2}+10$ is continuous at $x=3$, we have:

$$
\lim _{x \rightarrow 3^{+}} f(x)=\lim _{x \rightarrow 3^{+}} c x^{2}+10=9 c+10
$$

In order to make all three of these the same, we need $9 c+10=6$. Thus, $c=-\frac{4}{9}$.
4. Find all points of discontinuity of f, where f is defined by $f(x)= \begin{cases}\frac{|x|}{x}, & \text { if } x \neq 0 \\ 0, & \text { if } x=0\end{cases}$

Ans.

LHL $=\lim _{x \rightarrow 0^{-}} f(x)=\lim _{x \rightarrow 0^{-}} \frac{|x|}{x}$
Putting $x=\mathrm{O}-h$ as $x \rightarrow \mathrm{O}^{-}$when $h \longrightarrow \mathrm{O}$
$\therefore \lim _{x \rightarrow 0^{-}} f(x)=\lim _{h \rightarrow O} \frac{|O-h|}{O-h}$

$$
=\lim _{h \rightarrow 0} \frac{h}{-h}=-1
$$

RHL $=\lim _{x \rightarrow 0^{+}} f(x)=\lim _{x \rightarrow 0^{+}} \frac{|x|}{x}$
Putting $x=\mathbf{O}+h$ as $x \longrightarrow \mathrm{O}^{+} ; h \longrightarrow \mathbf{O}$
$\therefore \lim _{x \rightarrow 0^{+}} f(x)=\lim _{h \rightarrow O} \frac{|O+h|}{O+h}$

$$
=\lim _{h \rightarrow 0} \frac{h}{h}=1
$$

\therefore LHL \neq RHL. Thus, $f(x)$ is discontinuous at $x=0$.
5. Let $G(x)= \begin{cases}\frac{1}{(x+3)^{2}} & , \text { if } x \leq-1 ; \\ 2-x & , \text { if }-1<x \leq \mathbf{1} ; \text {. Find all values of } x \text { where } G \text { is not continuous. } \\ \frac{3}{x+2} & , \text { if } x>1 .\end{cases}$

Solution: There are four points to immediately consider: $x=-3$ and $x=-2$ because they make a denominator zero as well as $x=-1$ and $x=1$ because the function rule changes at these values.
$\mathrm{x}=-3$: Since $y=\frac{1}{(x+3)^{2}}$ is discontinuous at $x=-3$ and $G(x)$ uses this rule for $x<-1$, we see that $G(x)$ is NOT continuous at $x=-3$.
$\mathrm{x}=-2$. Even through $y=\frac{3}{x+2}$ is discontinuous at $x=-2$, the function $G(x)$ only uses the rule $y=\frac{3}{x+2}$ for values where $x>1$ and the rule it does use at $x=-2$ is continuous at that value. So $G(x)$ is continuous at $x=-2$.
$\mathrm{x}=-1 . \lim _{x \rightarrow-1^{-}} G(x)=\frac{1}{(-1+3)^{2}}=\frac{1}{4}$ and $\lim _{x \rightarrow-1^{+}} G(x)=2-(-1)=3$. Since these are not the same, the function $G(x)$ is NOT continuous at $x=-1$.
$\mathrm{x}=1 . \lim _{x \rightarrow 1^{-}} G(x)=2-(1)=1$ and $\lim _{x \rightarrow 1^{+}} G(x)=\frac{3}{1+3}=1$. Since these ARE the same and they equal the value of the function at $x=1$, the function $G(x)$ is continuous at $x=1$.
Therefore, the function $G(x)$ is continuous everywhere except $x=-3$ and $x=-1$.

Question 7: Discuss the continuity of the following function

$$
f(x)=\left\{\begin{array}{cc}
|x|+3, & \text { If } x \leq-3 \\
-2 x, & \text { If }-3<x<3 \\
6 x+2, & \text { If } x \geq 3
\end{array}\right.
$$

Answer 7:

$$
k<-3 \text { or } k=-3 \text { or }-3<k<3 \text { or } k=3 \text { or } k>3
$$

First case If, $k<-3$,
$f(k)=-k+3$ and $\lim _{x \rightarrow k} f(x)=\lim _{x \rightarrow k}(-x+3)=-k+3$. Here, $\lim _{x \rightarrow k} f(x)=f(k)$
Hence, the function f is continuous for all real numbers less than -3 .
Second case: If, $k=-3, f(-3)=-(-3)+3=6$
$\mathrm{LHL}=\lim _{x \rightarrow-3^{-}} f(x)=\lim _{x \rightarrow-3^{-}}(-x+3)=-(-3)+3=6$
RHL $=\lim _{x \rightarrow-3^{+}} f(x)=\lim _{x \rightarrow-3^{+}}(-2 x)=-2(-3)=6$. Here, $\lim _{x \rightarrow k} f(x)=f(k)$
Hence, the function f is continuous at $x=-3$.
Third case If, $-3<k<3$,
$f(k)=-2 k$ and $\lim _{x \rightarrow k} f(x)=\lim _{x \rightarrow k}(-2 x)=-2 k$. Here, $\lim _{x \rightarrow k} f(x)=f(k)$

Fourth case If $k=3$,
LHL $=\lim _{x \rightarrow k^{-}} f(x)=\lim _{x \rightarrow k^{-}}(-2 x)=-2 k$
RHL $=\lim _{x \rightarrow k^{+}} f(x)=\lim _{x \rightarrow k^{+}}(6 x+2)=6 k+2$,
Here, at $x=3$, LHL \neq RHL.
Hence, the function f is discontinuous at $x=3$
Fifth case If, $k>3$,
$f(k)=6 k+2$ and $\lim _{x \rightarrow k} f(x)=\lim _{x \rightarrow k}(6 x+2)=6 k+2$,
Here, $\lim \underset{x \rightarrow k}{x \rightarrow x})=f(k)$
Hence, the function f is continuous for all $x \geq 3$
Hence, the function f is discontinuous for all at $x=3$

Question 26: If $\mathrm{f}(\mathrm{x})$ is continous at $x=\frac{\pi}{2}$, then find the value of k

Answer 26:

$$
f(x)=\left\{\begin{array}{ll}
\frac{k \cos x}{\pi-2 x}, & \text { If } x \neq \frac{\pi}{2} \\
3, & \text { If } x=\frac{\pi}{2}
\end{array} \text { at } x=\frac{\pi}{2}\right.
$$

Given that the function is continuous at $x=\frac{\pi}{2}$.

$$
\begin{aligned}
& \text { Therefore, LHL }=\text { RHL }=f\left(\frac{\pi}{2}\right) \\
& \Rightarrow \lim _{x \rightarrow \frac{\pi}{2}} f(x)=\lim _{x \rightarrow \frac{\pi^{+}}{2}} f(x)=f\left(\frac{\pi}{2}\right) \\
& \Rightarrow \lim _{x \rightarrow \frac{\pi}{2}} \frac{k \cos x}{\pi-2 x}=\lim _{x-\frac{\pi^{+}}{2}} \frac{k \cos x}{\pi-2 x}=3 \\
& \Rightarrow \lim _{h \rightarrow 0} \frac{k \cos \left(\frac{\pi}{2}-h\right)}{\pi-2\left(\frac{\pi}{2}-h\right)}=\lim _{h \rightarrow 0} \frac{k \cos \left(\frac{\pi}{2}+h\right)}{\pi-2\left(\frac{\pi}{2}+h\right)}=3 \\
& \Rightarrow \lim _{h \rightarrow 0} \frac{k \sin h}{2 h}=\lim _{h \rightarrow 0} \frac{-k \sin h}{-2 h}=3 \\
& \Rightarrow \frac{k}{2}=\frac{k}{2}=3 \quad\left[\because \lim _{h \rightarrow 0} \frac{\sin h}{h}=1\right]
\end{aligned}
$$

$$
\Rightarrow k=6
$$

Question 30:

Find the values of a and b such that the function defined by

$$
f(x)=\left\{\begin{aligned}
5, & \text { If } x \leq 2 \\
a x+b, & \text { If } 2<x<10 \\
21, & \text { If } x \geq 10
\end{aligned}\right.
$$

is a continuous function.

Answer 30:

Given that the function is continuous at $x=2$.
Therefore, LHL $=$ RHL $=f(2)$
$\Rightarrow \lim _{x \rightarrow 2^{-}} f(x)=\lim _{x \rightarrow 2^{+}} f(x)=f(2)$
$\Rightarrow \lim _{x \rightarrow 2^{-}} 5=\lim _{x \rightarrow 2^{+}} a x+b=5$
$\Rightarrow 2 a+b=5$

Given that the function is continuous at $x=10$
Therefore, $\mathrm{LHL}=\mathrm{RHL}=f(10)$

$$
\begin{align*}
& \Rightarrow \lim _{x \rightarrow 10^{-}} f(x)=\lim _{x \rightarrow 10^{+}} f(x)=f(10) \\
& \Rightarrow \lim _{x \rightarrow 10^{-}} a x+b=\lim _{x \rightarrow 10^{+}} 21=21 \\
& \Rightarrow 10 a+b=21 \tag{2}
\end{align*}
$$

Solving the equation (1) and (2), we get

$$
a=2 . \quad b=1
$$

Question 31:

Show that the function defined by $f(x)=|\cos x|$ is a continuous function.
Answer 31:
Assuming that the functions are well defined for all real numbers, we can write the given function f in the combination of g and $h(f=g o h)$. Where, $g(x)=|x|$ and $h(x)=\cos x$. If g and h both are continuous function then f also be continuous.
$[\because \operatorname{goh}(x)=g(h(x))=g(\cos x)=|\cos x|]$
We know that $|x|$ and $\cos x$ both are continuous functions, therefore their composition function will also be continuous.

Question 32:

Show that the function defined by $f(x)=\cos \left(x^{2}\right)$ is a continuous function.
Answer 32:
Assuming that the functions are well defined for all real numbers, we can write the given function f in the combination of g and $h(f=g o h)$. Where, $g(x)=\cos x$ and $h(x)=x^{2}$. If g and h both are continous function, then f also be continuous.
$\left[\because g o h(x)=g(h(x))=g\left(x^{2}\right)=\cos \left(x^{2}\right)\right.$
Function $g(x)=\cos x$
Let, k be any real number. At $x=k, g(k)=\cos k$
$\lim _{x \rightarrow k} g(x)=\lim _{x \rightarrow k} \cos x=\lim _{h \rightarrow 0} \cos (k+h)=\lim _{h \rightarrow 0} \cos k \cos h-\sin k \sin h=\cos k$
Here, $\lim _{x \rightarrow k} g(x)=g(k)$, Hence, the function g is continuous for all real numbers.
Function $h(x)=x^{2}$
Let, k be any real number. At $x=k, h(k)=k^{2}$
$\lim _{x \rightarrow k} h(x)=\lim _{x \rightarrow k} x^{2}=k^{2}$
Here, $\lim h(x)=h(k)$, Hence, the function h is continuous for all real numbers. $x \rightarrow k$
Therefore, g and h both are continuous function. Hence, f is continuous.

Summary

- Definition: $f(x)$ is continuous at $x=c$ if $\lim _{x \rightarrow c} f(x)=f(c)$
- Right-continuous at $x=c$ if $\lim _{x \rightarrow c^{+}} f(x)=f(c)$
- Left-continuous at $x=c$ if $\lim _{x \rightarrow c^{-}} f(x)=f(c)$
- If $f(x)$ is continuous at all points in its domain, fis simply called continuous.
- There arethreecommon types of discontinuities: removable, jump, infinite.
- A removable discontinuity can often be fixed using an extension of the original function.
- There are properties of continuity: sums, products, multiples, differences, quotients (when the denominators $\neq 0$) and composites are also continuous.
- Basic functions: Polynomials, rational functions, nth-root and algebraic functions, trig functions and their inverses, exponential and log functions are continuous on their domains.
- The Intermediate Value Theorem can be used to determine if a certain $f(x)$ value must exist over a certain interval.
- If f is continuous over the range of g and g is continuous over its domain then fog is a continuous

